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OPTIMUM REIAXATION TIME FOR A MAXWELL CORE
DURING FORCED VIBRATION OF A ROCKET ASSEMBLY

by
Bernard W. Shaffer and Robert I. Sann

When the core of a case-bonded viscoelastic assembly is made of a
Maxwell solid, an optimum relaxation time is found which minimizes the dis-
Placement amplitude and the bond stress response &t resonence. For a Voigt
solid the displacement amplitude and the bond stress response at resonance
decreases with retardation time, but no optimum time exists in the same
sense.

In a previous paper concerned with the forced vibration response of
a2 case-bonded viscoelastic cylinderﬁlJ*, the authors presented numerical
results which indicated the existence of an optimum relaxation time 1 for
& Meaxwell solid. At the optimum relaxation time 1t the bond stress amplitude
response is minimized. It was observed on the basis of some numerical calcu-
lations that the optimum relaxation time <1 decreases with increasing values
of the resonant frequency w.

It is the purpose of this brief note to prove the existence of an
optimum relaxation time 1 for an assembly consisting of a solid cylinder
bonded to a thin casing, if the cylinder is made of a material which is a
Maxwell solid. It is also demonstrated that a Voigt solid has no optimum
retardation time.

The present analysis starts with the law of conservation of energy

for the system. Neglecting thermodynamic effects the law of conservation of

energy may be written

d
P, = (k) + jvoijéij av (1)

*
Superscript numbers in squared brackets designate references listed in
the bibliogrephy.
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where Oij are the components of stress and éij are the camponents of
strain rate; t is the parameter time. The term Pext is the rate of work
of the external forces, and KE is the kinetic energy of the system. The
integral represents the rate of work done by the internal stresses during
deformation.

There is no change in KE over one cycle of sinusoidal vibration.

Hence the integral of Equation (1) from t =0 to t = 2r/w may be written

ox /u 2n fuw .
r‘
j P, dt = j J o35 €3y av at (2)

In the particular problem under consideration, which is the same as

that previously studiedtll, the rate of work of the external force may be

written

+%

where p is the normal surface traction applied to the outer surface of the
casing, u is the radial displacement of particles under load; a is the
radius of the common surface between the cylinder and its casinge.

It is convenient to separate the stress and strain-rate components
into deviatoric components Sij’ eij and its mean normal components o,€,
respectively. If this is done the product Oijéij can be written

%5 €ij 8y5854 * 30¢ (&)

r
Should the assumption again be made;ll that the cylinder is elastic
in dilatation

g = Ke (5)
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where K 1is the bulk modulus of elasticity. The integral on the right

side of Equation (2) then becames

2n /m an /'J)

L jvoijéij av dt = jo Ivsijéi;j av at (6)

Equation (6) shows that all vibratory energy dissipation is due to distortion

and none to volume change.

Let us write the pressure load p(G,t) as a phasor

p = Re (P ™) (7)

where Po is the complex amplitude and @ the real frequency. Then the

radial displacement u(r,0,t) can be expressed

U
u = Re (39 (Ju,r) B, em”?} (8)
(o]

where the complex displacement transfer function Uo(,jw ,r)/Po is given

explicitly by Equation (37a) of Reference [1], namely

U, a Jy (ar) 9)
P - 2 _hE &
o [pau + 2G - ;z;:v-é—)-] Jl(z) - (K + g G)z Jo(z)

where E,v are respectively Young's modulus and Poisson's ratio for the casing
material p is the mass density of the casing, per unit area of the middle
surface and h is the wall thickness of the casing; G is the shear modulus

of the core. The terms Jn(x) is Bessel's function of the order n and

Q = m \/_7/(1( + 3 G) (10)



Substituting Equations (7), (8) into Equation (3) one finds that

- Jmt . Uo . Jnt
Pt = - cnaRe (Poe ") Re | ju F; (3v,a) P e (11)
Then as a consequence of the lemma
an s
j Re(cej”t) Re (demﬁt)dt = .% Re (cd) (12)

(o)

it is found by substituting Equation (9) into the left side of Eguation (2),
that the expression for the work of the external forces in one cycle of

vibration becomes

2n fm 2 U
j P, dt = ox’a | P_ t Im[-I;Q (jm,a)] (13)

(o]
(o]

In order to evaluate the double integral on the right side of

Equation (6) one writes the principal deviatoric strain components e

e and as or
00 ezz phasors,

ot
ey = Re (5,67

5 o= Re (B,e0") , e = ke (EBe'J""'t) (14)

1 o

vhere El’ E2, and E, are the complex deviatoric strain amplitudes.

3
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The principal deviatoric stress components Srr’ Sgg and S may be

22
obtained by using Equation (14) and the definition of complex shear modulus

G, (),

- Jot _ Jot - jnt
8. = Re(2GcEle )» Soo-Re(ZGcEge )s S, Re(QGcEje ) (15)

Substituting Equations (14, (15) into Eguation (6) and using the lemma of
Equation (12) one obtains for the work done by the internal stresses in one

cycle of vibration the expression

enfy

j j 0..8. . ava = on L [Gc(iﬂﬂg

TR 2 | 12
] st (1B 1% | E| % |E5)%) an (16)

A
Equation (2) may now be applied by using the results of Equations (13) and (16).
A relationship is obtained between Uo/Po and G, involving the strain
amplitudes, namely

U I16 ()
Im[P—°~ (jn,a;] - —"[———c ’] jAuElg%- |E2;2+ |E3'2) A (17)
(o]

na 'Poig

The complex, deviatoric strain amplitudes El, E2 and E5 are
U,
related to the displacement transfer function P_o (jn,a) through the strain-

o
displacement equations of Reference [2], namely

4] : J. (or) T

B = 5 (e Sagylen) - — |7,/ 5,(2) . (182)
o} .
U, e Jl(ar)“' ‘
E, = F; (jw,a) L- 5 Jo(ar) + P /Jl(z) (18v)
U

B = 52 (ne) [ - § 5500 2, / 3y(2) (18¢)
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The area integral appearing on the right side of Equation (17) can

now be expressed as

U _(jv,a)
quEll % 1513 15028 = 2efp | 2 ] (19)
The factor
.-2d lz .z o J,(x) 2 I (x) 4 1 2
m(z) = I_J;(—Z_)Tz— jo{! 5 9,(x) - < -39, |+ [5,(x) }xdx

(20)

is a non-negative real valued function of 2z involving integrals of Bessel
functions.
When Equation (19) is inserted into Equation (17) one obtains a

Uo(jv,a)
P
o]

single expression in and Gc(iu) alone, namely

U /. g 2 T 1
Im[ i)E(J'u.a,a)J - 2 n(z) Im{Gc('j""),I (21)

e}

Yo(jn,a)
P
[0}

For the particular values of the parameters used in Reference [1), m(z)

is practically insensitive to T over a wide range of frequencies and time
constants; for both Voigt and Maxwell solids. The term m(z), however, does
vary significantly with frequency.

In lightly damped systems the rescnant frequencies are approximately
equal to the respective resonant frequencies of the corresponding perfectly
elastic system. Within such lightly damped systems, therefore, it follows
that Uo/PB is approximately pure imaginary at resonance. The right hand
side of Equation (21) is then non-negative, for positive ', in which case
Uo, must lead Po by approximately 90 degrees. Therefore, it is reasonable

to substitute ,UO/POI for Im(Uo/Po) and write Equation (21) as



Yo(gm,e)

P
0

- 8/ (o] @)

The coefficient a/2m of Equation (22) is practically independent
of viscoelastic time constant, for the parameters considered.
In the case of Voigt and Maxwell solids, the complex shear modulus

Gc depends on the time parameter 1 only through the product wT, so

that
G, =G, g(jmT) (23)

where
g = 1+ jvt , Voigt Solid (2La)
g = jot / (1+ jnt) , Maxwell Solid (glv)

and the static modulus of rigidity Go is real.

The g 1loci are plotted in Figure 1 as a function of mt. It is
apprarent that Im g is unbounded for a Voigt solid, but has a maximum at
mT = 1 for a Maxwell solid. Hence 1/Im g 1is a monotonically decreasing
expression for a Voigt solid, but first decreases, then increases for a
Maxwell solid when 1/Im g is regarded as a function of T for a fixed
poéitive value of m.

Thus, there exists an optimum relaxation time 1 , for & Maxwell solid,
vhich minimizes the displacement amplitude at resonance. Moreover the

optimum T is simply the reciprocal of the resonant frequency m, i.e.

Topt = 1/ Maxwell solid (25)

For a Voigt solid, the displacement amplitude at resonance decreases

monotonically with increasing numerical values of 1. Thus there is no
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optimum retardation time for a Voigt solid, in the sense developed above.
At the same values of w1 and GO the Voigt solid always provides
greater vibration attenuation than the Maxwell solid, since the former has
a greater value of !Im Gcl .
Let us now examine the amplitude of the radial bond stress o__ (a,0,t)

w{rr)

at resonance. The appropriate stress transfer function is T (gn,a) at
o]

the lowest circumferential wave number and is given by Equation (39) of

Reference [11 as

247 (5u,2) 2 3,(2) - 2(c,/c;)? 7y (2)

P (w)
B CACER <:> ]| EACREA®

G (lv)

where the dimensionless frequency
z = ma/Cl

and the terms

J(K+%Ggh ;o G,

.J G [y
Uo(jﬁ:a)

It may be related to the bond displacement transfer function T by
o]
means of Equation (9) thereby providing the equality

( c oo
E‘zrr)(a‘w,a) = d [HS(J(”’a) J
Po PO

where the parameter d is defined by the relation

% (01? z J (2) [/ Jy(2) - 2 c22)

(26)

(27)

(28)

(29)

(30)
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For the numerical values used in Reference [ 11, namely

/iy = 1.96 ;  E/G_(1-°) = 22,500,

(31)
c§°)/cé°) = 30.35, ; h/a = 0.1,
the parameter d 1is practically insensitive to 1 over a wide range of
frequencies 1wy for both Voigt and Maxwell materials.
Substitution of Equation (29) into Equation (22) yields the following

result

Xgrr)(iu,a) ad -

= = (§5> I 'G (jn)] at resonance (32)

The coefficient ad/2m which appears in Equation (31) is practically inde-
pendent of the viscoelastic time constant T. Thus the same conclusions
regarding optimum values of 1 previously deduced for l Uo/Pol also hold
with respect to l Egrr)/Po '. In particular T given by Equation (25) also

minimizes

Zgrr)/Po | at resonance for a Maxwell solid.

In order to study numericelly the degree of approximation inherent in
Equation (25), a digital computer program was developed to search for the
optimum value of T by iteration. The program was applied to the Maxwell
cylinder assembly defined by Equation (31). The program works in the
following way.

First the parameter TCéo)/a is fixed and the parameter eua/c§°) is
E:(()rr)/Po

varied to determine a maximum value of This locates the

resonant frequency and peak eamplitude as a function of relaxation time. Next
TCéO)/a is varied and the resonant peak amplitudes so generated are examined

for a minimum peak amplitude. An optimum 1Cé°)/a and corresponding
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are also determined during this process.

The calculation procedure described above is performed for the first

three resonant frequencies given in Reference 11,

Table I, below.

Table I.
TCéo)/a
wa/c§°)
min 1 max Sérr?
wc{®)/a [ wasc{o) 7 (30:2)
nT

OPTIMUM RELAXATION TIME FOR MAXWELL CORE MATERIAL

Results are listed in.

First Second Third
0.012061 0.006540 0.004257 i
2.729058 5.032956 T+ 755903

501.268 242,630 179.112
0.998985 0999003 0999337

It is apparent from the Table that the optimum relaxation time can

be computed quite accurately from Equation (25), for the particular example

studied.

The large stress amplitude ratios for this configuration attest

to the low degree of damping in the system, and therefore to the validity of

the assumption that 59 (jw,a) is pure imaginary.
)

A comparison of the above ma/C§°) values with those given in

Figures (2), (3), (4) of Reference [2] for the corresponding all-elastic

assembly, reveals that even at optimum damping, damping hes negligible effect

on resonant frequency.
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